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Abstract Projected clustering partitions a data set into several disjoint clusters, plus
outliers, so that each cluster exists in a subspace. Subspace clustering enumerates clusters
of objects in all subspaces of a data set, and it tends to produce many overlapping clusters.
Such algorithms have been extensively studied for numerical data, but only a few have been
proposed for categorical data. Typical drawbacks of existing projected and subspace clus-
tering algorithms for numerical or categorical data are that they rely on parameters whose
appropriate values are difficult to set appropriately or that they are unable to identify pro-
jected clusters with few relevant attributes. We present P3C, a robust algorithm for projected
clustering that can effectively discover projected clusters in the data while minimizing the
number of required parameters. P3C does not need the number of projected clusters as input,
and can discover, under very general conditions, the true number of projected clusters. P3C is
effective in detecting very low-dimensional projected clusters embedded in high dimensional
spaces. P3C positions itself between projected and subspace clustering in that it can compute
both disjoint or overlapping clusters. P3C is the first projected clustering algorithm for both
numerical and categorical data.

Keywords Projected clustering · Subspace clustering · Clustering numerical and
categorical data

1 Introduction

Traditionally, clustering algorithms measure the similarity between data objects by consider-
ing all features/attributes of a data set. These approaches are successful for low-dimensional
data sets [11]. However, in high-dimensional data sets, traditional clustering algorithms tend
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to break down both in terms of accuracy, as well as efficiency, due to the so-called “curse of
dimensionality”. Seminal research [7] has shown that, as the dimensionality increases, the
farthest neighbor of a point is expected to be almost as close as its nearest neighbor for a wide
range of data distributions and distance functions. Due to this lack of contrast in distances, the
concept of proximity, and subsequently the concept of a “cluster”, are seriously challenged
in high dimensional spaces.

At the same time, not all attributes are relevant for cluster analysis. The irrelevant attri-
butes may in fact “hide” the clusters by making two objects that belong to the same cluster
look as dissimilar as an arbitrary pair of objects.

These facts motivated the idea that, in high dimensional spaces, data objects may form
clusters only when a subset of the attributes is considered. A subset of attributes is referred
to as a subspace. Furthermore, data objects may cluster differently in varying subspaces.

For instance, consider a gene expression data set that measures the expression level of
human genes in several human tissues. When clustering tissues, we deal with a clustering
problem in a very high dimensional space, because the number of genes, typically in the
thousands, is several orders of magnitude larger than the number of tissues, usually in the
tens. Because of the sparse nature of the data, it is unlikely that data points, representing
tissues, form clusters in full dimensional space. Instead, data points may form clusters only
when a small number of “relevant” attributes are considered. As noted in the bio-medical
literature, only a relatively small number of genes out of the total number of genes may be
relevant for distinguishing between normal and cancerous tissues. Furthermore, data points
may form different clusters in different subsets of attributes, depending on the different
phenotypes represented by these attributes. For example, the cancerous tissues may form a
cluster when a certain subset of attributes is selected, whereas the normal tissues may form a
cluster when a different subset of attributes is selected. The selected attributes are potential
indicators for the presence, respectively absence, of cancer.

Global dimensionality reduction techniques such as feature selection and feature trans-
formation (e.g., PCA) are not effective in this scenario. These techniques cluster data only
in a particular subspace, in which it may not be possible to recover all clusters [17]. Besides,
information concerning objects clustered differently in different subspaces is lost.

Projected clustering is defined to deal with the aforementioned challenges. Virtually all
existing projected clustering algorithms assume, explicitly or implicitly, the following defi-
nition of a projected cluster.

Definition 1.1 Given a database D of d-dimensional points. A projected cluster is defined
as a pair (Xi , Yi ), where (1) Xi is a subset of D, and (2) Yi is a subset of attributes so that the
points in Xi project along each attribute a ∈ Yi onto a small range of values, compared to the
range of values of the whole data set on a, and (3) the points in Xi are uniformly distributed
along every other attribute not in Yi .

For a projected cluster (Xi , Yi ), the attributes in Yi are called the “relevant” attributes for
Xi , whereas the remaining attributes are called “irrelevant” attributes for Xi . The data model
in projected clustering assumes that the data consists of k projected clusters, {(Xi , Yi )}i=1,k ,1

and a set of outliers, O , where {X1, . . . , Xk, O} form a partition of D. The subsets of attri-
butes {Yi }i=1,k may not be disjoint and they may have different cardinalities. The outliers
O are assumed to be uniformly distributed throughout the space. The projected clustering
problem is to detect k projected clusters in the data, plus possibly a set of outliers.

1 Notation i = 1, k denotes all integers i between 1 and k.
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Definition 1.1 states that the relevant attributes Yi of a projected cluster (Xi , Yi ) are a
subset of the data attributes. Such projected clusters are easily interpretable by the user
because the original attributes of the data set have specific meaning in real-life applications.
ORCLUS [2] generalizes projected clusters (Xi , Yi ) by assuming that Yi is an arbitrary set
of orthogonal vectors.

Existing projected clustering algorithms are either based on the computation of k initial
clusters in full dimensional space, or leverage the idea that clusters with as many relevant
attributes as possible are preferable. Consequently, these algorithms are likely to be less
effective in the practically most interesting case of projected clusters with very few relevant
attributes, because the members of such clusters are likely to have low similarity in full
dimensional space. Furthermore, a re-occurring weakness of these algorithms is that their
performance depends greatly on a series of parameters whose appropriate values are difficult
to anticipate by the users (e.g., the true number of projected clusters or the average dimen-
sionality of subspaces where clusters exist). Finally, projected clusters are, by definition,
disjoint. However, a data point may satisfy the signature of more than one projected cluster.
Projected clustering is not able to capture this type of information.

Projected clustering is related to subspace clustering [3] in that both detect clusters of
objects that exist in subspaces of a data set. In contrast to projected clustering, subspace clus-
tering detects clusters of objects in all subspaces of a data set according to their respective
definition of a cluster. A large number of overlapping clusters is typically reported. Exist-
ing subspace clustering algorithms start with 1D clusters, which are subsequently merged
bottom-up, similarly to the Apriori algorithm for finding frequent itemsets [4], in order to
compute clusters of higher dimensionality. To avoid an exhaustive search through all possible
subspaces, most subspace clustering algorithms use a global density threshold that ensures
the downward closure property necessary for the application of an Apriori style search. How-
ever, using a global density threshold ignores the fact that the sparseness of the data increases
with dimensionality.

The majority of existing subspace and projected clustering algorithms are designed for
numerical data sets, i.e., data sets where the domain of every attribute is inherently ordered.
However, many real data sets are categorical, i.e., the attribute domains are discrete and not
ordered [22].

Subspace and projected clustering algorithms designed for numerical data are not read-
ily applicable to categorical data sets. Some of these algorithms (e.g., PROCLUS [1]) use
distance functions that exploit the geometric properties of the data space, which cannot be
effectively captured by categorical distance functions, such as the simple matching coeffi-
cient. Other algorithms (e.g., ORCLUS [2]) require numerical computations that are not
well-defined for categorical attributes (e.g., mean, variance, eigenvalues). Finally, some
algorithms (e.g., CLIQUE [3]) are based on the discretization of individual data attributes
into bins, and the notion of “neighboring” bins is used to manage the search through all
possible subspaces. Categorical attributes lack order, and thus this notion is not directly
applicable.

A significantly smaller body of work has been dedicated to the subspace clustering prob-
lem on categorical data than to the same problem on numerical data. Existing subspace
and projected clustering algorithms for categorical data (e.g., SUBCAD [9], CLICKS [26],
CACTUS [10]) exhibit the same weaknesses as their numerical counterparts.

Contributions and outline of the paper. In this paper, we propose an algorithm for
mining projected clusters, called P3C (Projected Clustering via Cluster Cores) with the
following properties.
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1. P3C effectively discovers the projected clusters in the data while being remarkably robust
to the only parameter that it takes as input. Setting this parameter requires little prior
knowledge about the data, and, in contrast to all previous approaches, there is no need
to provide the number of projected clusters as input, since our algorithm can discover,
under very general conditions, the true number of projected clusters.

2. P3C effectively discovers very low-dimensional projected clusters embedded in high
dimensional spaces.

3. Although essentially a projected clustering algorithm, P3C may assign a data point to
more than one cluster if the point satisfies the description of more than one projected
cluster.

4. P3C is the first projected clustering algorithm that can be applied on both numerical and
categorical data sets.

5. P3C effectively discovers clusters with varying orientation in their relevant subspaces in
the case of numerical data.

6. P3C is scalable with respect to large data sets and high number of attributes.

P3C is comprised of several steps. First, regions corresponding to projections of clusters
onto single attributes are computed. Second, cluster cores are identified by spatial areas that
(1) are described by a combination of the detected regions and (2) contain an unexpectedly
large number of points. Third, cluster cores are refined into projected clusters, outliers are
identified, and the relevant attributes for each cluster are determined.

The remainder of the paper is organized as follows. Section 2 introduces preliminary
definitions. Section 3 describes our algorithm. Section 4 presents an extensive experimental
evaluation of P3C. Section 5 reviews work relevant for this paper. Section 6 concludes the
paper.

2 Preliminary definitions

Let D = (xi j )i=1,n, j=1,d be a data set of n d-dimensional data objects. Let A = {a1, . . . , ad}
be the set of all attributes of the objects in D.

For numerical data sets, we can assume, without restricting the generality, that all attri-
butes have normalized values, i.e., (xi j )i=1,n, j=1,d ∈ [0, 1]. For categorical data sets, we

assume that each attribute ai is associated with a finite, discrete domain dom(ai ), ∀i = 1, d.
For a numerical attribute a j , an interval S = [vl , vu] on attribute a j is defined as all real

values x on a j so that vl ≤ x ≤ vu . The width of interval S is defined as width(S) := vu −vl .
For a categorical attribute a j , an interval S on attribute a j is defined as a subset of attri-

bute values for attribute a j , i.e., S = {xi1 j , . . . , xih j } ⊆ dom(a j ). In this case, the width of
the interval S is defined as the number of attribute values in S, i.e., width(S) := h.

The attribute of an interval S is denoted by attr(S), i.e., attr(S) = a j , if S ⊆ a j .
Figure 1 illustrates a numerical data set with two projected clusters, C1, and C2, both hav-
ing a1 and a2 as the only relevant attributes. S1, S2, and S3 are intervals on attribute a1,
S4, S5 and S6 are intervals on attribute a2, attr(S1) = attr(S2) = attr(S3) = a1, and
attr(S4) = attr(S5) = attr(S6) = a2. To simplify the presentation, we specify the attribute
of an interval only when it is necessary.

Let S be an interval on attribute a j . The support set of S, denoted by SuppSet (S), rep-
resents the set of database objects that belong to S, i.e.,
SuppSet (S) := {x ∈ D|x .a j ∈ S}. The support of S, denoted by Supp(S), is the cardinality
of its support set, i.e., Supp(S) := |SuppSet (S)|.
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Fig. 1 Overlapping true
p-signatures
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A p-signature S is defined as a set S = {S1, . . . , Sp} of p intervals on some (sub)set of
p distinct attributes {a j1 , . . . , a jp } ( ji ∈ {1, . . . , d}), where attr(Si ) = a ji . Si is also called
the projection of S onto attribute a ji , i = 1, p. For example, in Fig. 1, S = {S3, S4} is a
2-signature, where S3 is the projection of S onto attribute a1, and S4 is the projection of S
onto attribute a2. {S3, S1} is not a 2-signature, because S3 and S1 are intervals on the same
attribute a1.

The support set of a p-signature S = {S1, . . . , Sp}, denoted by SuppSet (S), represents
the set of database objects that are contained in the support sets of all intervals in S, i.e.,
SuppSet (S) := {x ∈ D|x ∈ ⋂p

i=1 SuppSet (Si )}. The support of a p-signature S, denoted
by Supp(S), is the cardinality of its support set, i.e., Supp(S) := |SuppSet (S)|.

A true p-signature S̃ of a projected cluster (Xi , Yi ), Yi = {a1, . . . , ap}, is a p-signature
{S1, . . . , Sp}, where Si is the smallest interval on attribute ai that contains the projections
onto ai of all the points in Xi , i = 1, p. In Fig. 1, the true p-signature of C1 is the 2-signature
{S1, S6}, and the true p-signature of C2 is the 2-signature {S2, S4}.

Since an attribute may be relevant to more than one projected cluster, true p-signatures
may overlap, i.e., they may contain overlapping intervals. In Fig. 1, C1 and C2 have overlap-
ping true p-signatures, since intervals S1 and S2 overlap on attribute a1. We assume that true
p-signatures can overlap as long as they are not completely nested within each other. True
p-signatures S̃ and R̃ are nested if for every interval Si in S̃, there is an interval S j in R̃ so
that Si ⊆ S j .

3 Algorithm P3C

P3C is based on the idea that if the true p-signatures of projected clusters were known, then
clusters can be immediately computed as the support sets of the true p-signatures. Since
the true p-signatures are not known, P3C computes in two steps a set of p-signatures that
match or approximate well the true p-signatures of projected clusters in the data. First, on
every attribute, intervals that match or approximate well projections of true p-signatures onto
that attribute are computed (Sect. 3.1). Second, the challenge is to determine which intervals
actually represent the same true p-signature. P3C addresses this challenge by aggregating
the computed intervals into cluster cores. Roughly speaking, a cluster core consists of a
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Fig. 2 Pseudo-code of P3C

p-signature S and its support set SuppSet (S), so that the p-signature S approximates a true
p-signature S̃ of a projected cluster C , and a large fraction of the points in SuppSet (S)

belongs to C (Sect. 3.2).
For the example in Fig. 1, P3C first computes the interval S3 on attribute a1 that approx-

imates the projections of the true 2-signatures {S1, S6} and {S2, S4} onto attribute a1, and
intervals S5 and S4 that approximate/match the projections of the same true 2-signatures onto
attribute a2. Second, P3C aggregates these intervals into two cluster cores, i.e., {S3, S4} and
{S3, S5}, which can be regarded as approximations of the two projected clusters in the data.

Cluster cores may include in their support sets additional points that do not belong to
the projected clusters that they approximate. This happens when the intervals are wider than
the projections of true p-signatures that they approximate. In Fig. 1, interval S3 is wider
than interval S2, and thus, the support set of cluster core {S3, S4} includes points that do not
belong to cluster C2. On the other hand, cluster cores may not include completely in their
support sets the projected clusters that they approximate. This is the case when the intervals
are tighter than the projections of true p-signatures that they approximate. In Fig. 1, interval
S5 is tighter than interval S6, and thus the support set of cluster core {S3, S5} does not include
all points of cluster C1. Thus, in order to compute the projected clusters, the supports sets
of cluster cores are refined, outliers are detected, and relevant attributes for each cluster are
determined (Sect. 3.3).

The pseudo-code of P3C is given in Fig. 2.

3.1 Approximating true p-signatures

An attribute that is irrelevant for all projected clusters exhibits, by Definition 1.1, uniform
distribution. In contrast, an attribute that is relevant for at least one projected cluster will
exhibit in general a non-uniform distribution, because it contains one or more intervals with
unusual high support corresponding to projections of clusters onto that attribute.

Note that theoretically an attribute could exhibit uniform distribution, even though it is
relevant for several projected clusters. This is the case when projected clusters are constructed
in such a way that their projections on a specific attribute have equal support, and thus they
form a uniform histogram. In such cases, it may still be possible to recover p-signatures of the
involved clusters, which are incomplete, but can be later refined — unless projected clusters
are constructed in such a way that all their relevant attributes look uniform. However, it is
assumed that these situations are not common in typical applications for projected clustering.
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Consequently, we need to identify attributes with uniform distribution, and, for the
non-uniform attributes, to identify intervals with unusual high support. For this task, the
Chi-square goodness-of-fit test [20] is employed. For this test, each attribute must be first
discretized into bins.

Discretization of numerical attributes. Each numerical attribute is divided into the same
number of equi-sized bins. Sturge’s rule [20] suggests that the number of bins should be equal
to �1 + log2(n)�, where n is the number of data objects.

Discretization of categorical attributes. Since the domain of a categorical attribute is
finite, we have a bin for each single value in the domain of a categorical attribute.

For every bin in every attribute, its support is computed. The Chi-square test statistic sums,
over all bins in an attribute, the squared difference between the bin support and the average
bin support, normalized by the average bin support. Based on the Chi-square statistic, the
uniform attributes are determined at a confidence level of α = 0.001. The confidence level
α does not act as a parameter of our method. α is set to one of the standard values used in
statistical hypothesis testing: the value 0.001 signifies that the probability of declaring an
attribute non-uniform when in fact the attribute is uniform is very small, i.e., less than 0.001.

On the attributes deemed non-uniform, the bin with the largest support is marked. The
remaining un-marked bins are tested again using the Chi-square test for uniform distribu-
tion. If the Chi-square test indicates that the un-marked bins “look” uniform, then we stop.
Otherwise, the bin with the second-largest support is marked. Then, we repeat testing the
remaining un-marked bins for the uniform distribution and marking bins in decreasing order
of support, until the current set of un-marked bins satisfies the Chi-square test for uniform
distribution. The process of marking bins is linear in the number of bins.

The challenge is to determine, for each attribute, which marked bins correspond to the
projection of the same true p-signature for which this attribute is relevant, since clusters may
have overlapping projections on some relevant attributes.

3.1.1 Intervals on numerical attributes

On numerical attributes, intervals are simply computed as maximal sets of consecutive marked
bins. Since the support of each marked bin deviates significantly from its expected support,
the support of intervals formed with marked bins will deviate from their expected support
significantly (i.e., with the average of the deviations of the constituent marked bins).

In order to understand the computation of intervals on categorical attributes in the next
section, we use the natural order exhibited by numerical attributes to define an “adjacency”
relationship between marked bins on the same attribute.

Definition 3.1 Let mb1 and mb2 be two marked bins on the same numerical attribute ai .
mb1 and mb2 are called “adjacent” if they are consecutive bins on attribute ai .

Subsequently, each numerical attribute can be represented as a graph, in which the vertices
are the marked bins on that attribute, and edges exist between two vertices if the corresponding
marked bins are adjacent, as defined in 3.1.

Property 3.1 Let ai be a numerical attribute. Let mbi1 , . . . , mbih be h marked bins on attri-
bute ai . Then, mbi1 , . . . , mbih are consecutive bins on attribute ai if and only if mbi1 , . . . , mbih

form a connected component in the associated graph.

Proof Let us assume that mbi1 , . . . , mbih are consecutive bins on attribute ai . Then, by
definition 3.1, there is an edge between mbil and mbil+1 in the associated graph,
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∀l = 1, h − 1. Therefore, there is a path between any two vertices mbil and mbi j , ∀l, j =
1, h, i.e., mbi1 , . . . , mbih form a connected component. Conversely, let as assume that
mbi1 , . . . , mbih form a connected component in the associated graph. By definition 3.1,
each node mbil ∀l = 1, h must have degree at most 2, and there must exist 2 nodes with
degree exactly 1. Starting from one of the nodes of degree 1, we can infer, based on
definition 3.1, the order of the bins mbi1 , . . . , mbih on attribute ai . Thus, mbi1 , . . . , mbih

are consecutive bins.

Consequence. On numerical attributes, intervals are equivalent to connected components
in the associated graph representation.

3.1.2 Intervals on categorical attributes

Categorical attributes lack order, and thus the notion of “consecutive” bins is not applicable.
In order to determine, for each attribute, which marked bins should be merged within the
same interval, we introduce a criterion based on the Poisson distribution.

The Poisson-based criterion. Let S be a p-signature. Let R = S ∪ {S′} be a (p + 1)-sig-
nature composed of S and an interval S′ that is not in S. Assuming that S is a subset of some
true t-signature T (t > p), we could ask the question whether S′ also belongs to T.

When S′ does belong to T, the support Supp(R) of R is likely to have a larger value than in
the case when S′ does not belong to T, because, in the former case, Supp(R) should include
a large fraction of the projected cluster with signature T. Clearly, the support Supp(R) of
R = S ∪ {S′} is equal to the number of points in SuppSet (S) that also belong to S′. Therefore,
we want to compute how many points in SuppSet (S) are expected to belong to S′ in the case
when S′ does not belong to T.

The points in SuppSet (S) are mainly points of a projected cluster with signature T, and
interval S′ does not belong to T. In this case, under the assumption that points in SuppSet (S)

are uniformly distributed in the attribute of interval S′, the expected number of points in
SuppSet (S) that also belong to S′ is proportional to width(S′). The following definition
formally introduces the notion of expected support of a (p + 1)-signature R = S ∪ {S′} with
respect to a p-signature S obtained by adding interval S′ to S.

Definition 3.2 Let S be a p-signature. Let R = S ∪ {S′} be a (p + 1)-signature composed of
S and interval S′ (S′ not in S). The expected support of the (p + 1)-signature R given the
p-signature S, denoted by ESupp(R = S ∪ {S′}|S), is defined as:

E Supp(R = S ∪ {S′}|S) := Supp(S) ∗ width(S′) (1)

We consider that if the actual support Supp(R) of R is significantly larger than the
expected support ESupp(R = S ∪ {S′}|S) of R given S, then this is evidence that S′ belongs
to the same true t-signature as S.

We need a quantitative way of deciding when the observed support Supp(R) of R = S
∪ {S′} is significantly larger than the expected support ESupp(R = S ∪ {S′}|S) of R given S.
For this task, we employ the Poisson probability density function Poisson(v, E) of observ-
ing v occurrences of a certain event within a time interval/spatial region, given the expected
number E of random occurrences per time interval/spatial region [20]:

Poisson(v, E) := exp(−E) ∗ Ev

v! (2)
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where exp stands for the exponential function. In our case, we measure the probability of
observing a certain number of points (i.e., Supp(R)) within a spatial region, given the ex-
pected number of points within this spatial region (i.e., ESupp(R = S ∪ {S′}|S)), under a
random process that uniformly distributes the points in SuppSet (S) onto the attribute of S′.

We call an observed support significantly larger than an expected support, if the observed
support is larger than the expected support, and the Poisson probability of observing the
support given the expected support is smaller than a certain value, which we call the Poisson
threshold.

The Poisson probability quantifies how likely the observed support Supp(R) of R is with
respect to the expected support ESupp(R = S ∪ {S′}|S) of R given S: the less likely the
observed support, the stronger the evidence that S′ represents the same projected cluster as
S.

The Poisson threshold is different from typical parameters used by clustering algorithms
(such as the number of clusters) in that it requires little prior knowledge about the data. The
Poisson threshold signifies the error probability that the user is willing to accept. Concretely,
the value 1.0E-20 for the Poisson threshold signifies that the probability of declaring that S′
represents the same projected cluster as S, when in fact this is not true, is very small, i.e.,
less than 1.0E-20. This is why higher values for the Poisson threshold like 1.0E-1 are not
useful. On the other hand, a very small value for the Poisson threshold would result in failing
to recognize that S′ represents the same projected cluster as S, when in fact this is true.

We use the Poisson-based criterion to decide whether two marked bins on two distinct
categorical attributes belong to the same cluster projection onto these attributes.

Definition 3.3 Let mb1 and mb2 be two marked bins on two distinct categorical attributes
ai and a j (i 
= j), respectively. Let P be a user-specified Poisson threshold. mb1 and mb2

belong to the projection of the same true p-signature onto ai and a j if the following two
conditions are satisfied:

1. Supp({mb1} ∪ {mb2}) > ESupp({mb1} ∪ {mb2}|{mb1}), and
Poisson(Supp({mb1} ∪ {mb2}), ESupp({mb1} ∪ {mb2}|{mb1})) < P

2. Supp({mb2} ∪ {mb1}) > ESupp({mb2} ∪ {mb1}|{mb2}), and
Poisson(Supp({mb2} ∪ {mb1}), ESupp({mb2} ∪ {mb1}|{mb2})) < P

Using Definition 3.3, all pairs of marked bins on distinct categorical attributes that repre-
sent the same cluster projections onto these attributes are computed. Subsequently, these pairs
are used to define an “adjacency” relationship between marked bins on the same categorical
attribute.

Definition 3.4 Let mb1 and mb2 be two marked bins on the same categorical attribute ai .
mb1 and mb2 are called “adjacent” if there is at least one marked bin mb3 on another cate-
gorical attribute a j , j 
= i , so that (mb1, mb3) and (mb2, mb3) belong to the same cluster
projection according to Definition 3.3.

In analogy to numerical data, intervals on categorical attributes are defined as connected
components under the adjacency relationship introduced in Definition 3.4. Some subspace
clustering algorithms for categorical data (e.g., CACTUS, CLICKS) define intervals on cat-
egorical attributes as cliques under a different adjacency criterion. Note that cliques under
the adjacency criterion in Definition 3.4 will produce overlapping intervals, which cannot
be obtained on numerical data, according to the adjacency criterion in Definition 3.1. In
order to have a unified treatment of numerical and categorical data, P3C computes connected
components instead of cliques under its adjacency criterion.
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3.2 Cluster cores computation

In practical applications, the number of possible p-signatures that can be constructed from
the set of computed intervals is large. The challenge is to determine which p-signatures do in
fact represent projected clusters. We use the Poisson-based criterion to address this challenge.

Intuitively, a p-signature S = {S1, . . . , Sp} represents a projected cluster C if S consists
of (1) only and (2) all intervals that represent cluster C . The first condition is equivalent
to requesting that for any q-signature Q ⊆ S (q = 1, p − 1), and any interval S′ ∈ S \ Q,
there is evidence that S′ represents the same projected cluster as Q. The second condition
is equivalent to requesting that S is maximal, i.e., for any interval S′ not in S, there is no
evidence that S′ represents the same projected cluster as S. Formally, a cluster core can be
defined as following.

Definition 3.5 A p-signature S = {S1, . . . , Sp} together with its support set SuppSet (S) is
called a cluster core, if:

1. For any q-signature Q ⊆ S, q = 1, p − 1, and any interval S′ ∈ S \ Q, it holds that:

Supp(Q ∪ {S′}) > E Supp (Q ∪ {S′}|Q) , and

Poisson(Supp(Q ∪ {S′}), E Supp(Q ∪ {S′}|Q)) < Poisson threshold

2. For any interval S′ not in S, it holds that

Supp(S ∪ {S′}) ≤ E Supp (S ∪ {S′}|S) , or

Poisson(Supp(S ∪ {S′}), E Supp(S ∪ {S′}|S)) ≥ Poisson threshold

Condition 1 in Definition 3.5 is equivalent to requesting, for any q-signature Q ⊆ S
(q = 1, p − 1), and any interval S′ ∈ S \ Q, that Supp(Q ∪ {S′}) is significantly larger than
ESupp (Q ∪ {S′}|Q). Condition 2 in Definition 3.5 is equivalent to requesting, for any interval
S′ not in S, that Supp(S ∪ {S′}) is not significantly larger than ESupp (S ∪ {S′}|S).

Condition 1 in Definition 3.5 satisfies the downward closure property, in the sense that,
given a p-signature S that satisfies Condition 1, any sub-signature of S also satisfies Condi-
tion 1. This fact motivates an Apriori-like generation of p-signatures that satisfy Condition
1. Condition 1 acts like the support test in frequent itemsets generation [4]: a signature con-
sisting of (q + 1) intervals will not be generated if any of its sub-signatures consisting of q
intervals does not satisfy Condition 1. p-signatures that satisfy Condition 1 are generated,
and the ones that are “maximal” in the sense of Condition 2 are reported as cluster cores.

3.3 Projected clusters computation, outlier detection, and relevant attributes identification

Let k be the number of cluster cores constructed according to Sect. 3.2. The support sets of
the k cluster cores are not necessarily disjoint, because data points may satisfy the signature
of several cluster cores. In addition, some data points may not satisfy the signature of any
cluster core. Note that the projected clusters computation and outlier detection are performed
in a subspace of (reduced) dimensionality d ′ of the original d-dimensional data, containing
all attributes that were deemed non-uniform according to the analysis presented in Sect. 3.1.

Numerical data. Cluster cores correspond to axis-parallel hyper-rectangles, but, on
numerical data, clusters may have non-axis parallel orientations in their relevant subspace.
In such cases, even if the computed intervals match the projections of true p-signatures onto
their relevant attributes, the support set of a cluster core may not necessarily contain all and
only the points of the projected cluster approximated by the cluster core.
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We take advantage of a property of numerical projected clusters that follows from
Definition 1.1, namely that cluster members project closely to cluster means on the directions
with the least spread. Thus, cluster members have shorter Mahalanobis distances to cluster
means than non-cluster members. Provided that the support set of a cluster core mainly con-
sists of members of the projected cluster C approximated by the cluster core, data points with
short Mahalanobis distance to the mean of the support set are highly likely to be members
of C .

Based on these considerations, we assign data points that do not satisfy the signature of any
cluster core to the “closest” cluster core in terms of Mahalanobis distances to means of support
sets of cluster cores. At this point, the k cluster cores correspond to a fuzzy partitioning of the
data set into k clusters, which is used to initialize the Expectation Maximization (EM) algo-
rithm [8]. EM computes data points’ probabilities of belonging to projected clusters based on
Mahalanobis distances between data points and the means of projected clusters. Therefore,
cluster members have higher probabilities of belonging to their clusters than non-cluster
members. EM stops when the means of the projected clusters remain unchanged between
two consecutive iterations. When starting with cluster cores, it takes only 5–10 iterations
until convergence, since the cluster cores typically approximate well projected clusters in the
data.

The output of EM is a matrix of probabilities that gives for each data point its probability
of belonging to each projected cluster. If disjoint projected clusters are desired, each data
point is assigned to the most probable cluster. If overlapping projected clusters are needed, a
data point is assigned to a projected cluster if the probability of belonging to it is larger than
1/k.

Clustering and outlier detection are closely related [21]. We use a standard technique for
outlier detection [19]. The Mahalanobis distances between data points and the means of the
projected clusters to which they belong are compared to the critical value of the Chi-square
distribution with d ′ degrees of freedom at a confidence level of α = 0.001. The confidence
level α signifies that the probability of failing to recognize a true outlier is less than 0.001.
Data points with Mahalanobis distances to cluster means larger than this critical value are
declared outliers.

Categorical data. In this case, clusters are axis-parallel hyper-rectangles. Similarly to the
computation of projected clusters on numerical data, we could use some distance function
for categorical data to assign the remaining data points to cluster cores. We could then use
the resulting fuzzy partitioning of the data points into k clusters to initialize EM. Based on
the current definition of clusters, EM computes cluster means and covariance matrices. Such
computations are not possible for categorical data. Instead, we compute the projected clusters
by measuring how “relevant” the bins that appear in the signatures of cluster cores are with
respect to the cluster cores.

We consider the space given by the union of all (‘attribute_id’, ‘bin_id’) pairs, where
‘attribute_id’ is an attribute of an interval I that appears in the definition of a cluster core,
and ‘bin_id’ is a bin that appears in the interval I onto ‘attribute_id’.

Each cluster core CC is represented as a vector in this space, and each entry in this vector
represents the “relevance score” of a certain (‘attribute_id’, ‘bin_id’) pair with respect to the
cluster core CC . Similarly to the standard “TF-IDF” scheme used in information retrieval,
the relevance score of a pair (‘attribute_id’, ‘bin_id’) with respect to a cluster core CC con-
sists of the product of two terms. The first term of the product is the fraction of cluster core
points that belongs to the support set of ‘bin_id’ onto attribute ‘attribute_id’. The second
term of the product is the inverse of the fraction of data points that belongs to the support
set of ‘bin_id’ onto attribute ‘attribute_id’. In other words, the relevance score of a pair
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(‘attribute_id’, ‘bin_id’) with respect to a cluster core CC is proportional to the frequency
at which the pair (‘attribute_id’, ‘bin_id’) appears among the points of the cluster core CC ,
and inverse proportional to the frequency at which the pair (‘attribute_id’, ‘bin_id’) appears
among all data points.

Each data point is also represented as a vector in the aforementioned space. In this case, the
entry corresponding to a (‘attribute_id’, ‘bin_id’) pair is either 1 or 0, depending on whether
the data point belongs to the support set of ‘bin_id’ onto attribute ‘attribute_id’ or not.

The similarity between a data point and a cluster core is defined as the dot product of their
corresponding vectors. We can regard the resulting similarity matrix between data points and
cluster cores as a matrix of membership probabilities by normalizing each matrix entry by the
sum of its row. Similarly to the numerical data, we can compute now disjoint or overlapping
clusters. Outliers are the points with similarity 0 to all cluster cores.

The relevant attributes of a projected cluster include the attributes of the intervals that
make up the p-signature of the cluster core based on which this cluster has been computed.
As discussed in Sect. 3.1, an attribute may be considered uniform although it may be relevant
for several projected clusters. To cover these rather rare cases too, we test, for each projected
cluster, using the Chi-square test, whether its members are uniformly distributed in the attri-
butes initially deemed uniform. When the test indicates a non-uniform distribution, then those
attributes are included in the attributes considered relevant for the projected cluster.

3.4 Discussion

P3C can compute both disjoint and overlapping clusters. In this respect, P3C positions itself
between projected and subspace clustering algorithms. P3C shares some similarities with
the subspace clustering algorithms in that it approximates 1D projections of clusters, which
are subsequently aggregated in a bottom-up fashion to find the clusters. Definition 3.5 used
by P3C to aggregate 1D cluster projections satisfies the downward closure property in order
to avoid an exhaustive traversal of the search space. However, unlike the other subspace
clustering algorithms, our criterion leverages the data model, and it is not a global density
threshold that ignores the fact that density decreases with increasing dimensionality.

P3C can deal with data sets with numerical attributes only, or with data sets with cate-
gorical attributes only. In the case of mixed data sets, the computation of intervals can be
performed according to the attribute type, as discussed in Sects. 3.1.1 and 3.1.2, followed
by the cluster cores computation, as in Sect. 3.2. However, the projected clusters computa-
tion and outlier detection proposed for numerical data are not applicable on the categorical
attributes, since they require numerical computations that are not well defined for categori-
cal attributes. In this case, we regard the numerical attributes as being discretized either as
suggested in Sect. 3.1, or based on existing domain knowledge, and we apply the projected
clusters computation and outlier detection for categorical data.

If desired, the p-signatures of projected clusters can be refined. For numerical data, we can
compute for each relevant attribute of a cluster the smallest interval that the cluster members
project onto. For categorical data, we can remove from the signature of a cluster the bins
with small relevance score.

4 Experimental evaluation

The experiments reported in this section were conducted on a Linux machine with 3 GHz
CPU and 2 GB RAM.
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In the following, we use “P3C_hard” to refer to the variant of P3C that computes disjoint
clusters, and “P3C_soft” to refer to the variant of P3C that computes overlapping clusters.
We use the term P3C when we refer collectively to both variants.

Our goal is to assess the performance of P3C on data sets that contain low-dimensional
projected clusters embedded in high dimensional spaces. As noted in previous work (e.g.,
[23]), full-dimensional clustering algorithms are likely to be less effective on these data sets,
because the members of such clusters are likely to have low similarity in full dimensional
space.

Synthetic Data. Synthetic data sets were generated as described in Aggarwal et al. [1],
Aggarwal and Yu [2], [26] with n = 10, 000 data points, d = 100 attributes, 5 clusters with
sizes 15–25% of n, and 5% of n outliers. For the categorical synthetic data sets, we used the
domain size = 100 (i.e., the number of categories on each attribute).

In order to study the performance of P3C on numerical data, eight categories of data sets
have been generated, according to the following criteria:

1. Distribution of cluster points in the relevant subspace: uniform versus normal.
2. Projected clusters having an equal number of relevant attributes versus projected clusters

having different numbers of relevant attributes.
3. Projected clusters with axis-parallel orientation versus projected clusters with arbitrary

orientation.

In addition, two categories of categorical data sets were generated: category “Equal” and
category “Different” according to criterion (2).

A data set in the category “Uniform_Equal_Parallel” is a data set for which the cluster
points are uniformly distributed in the relevant subspace, the number of relevant attributes for
each projected cluster is equal, and the eigenvectors of each projected cluster’s covariance
matrix are parallel to the coordinate axes. In each category, we generated data sets with
average cluster dimensionality 2, 4, 6, 8, 10, 15, and 20% of the data dimensionality d . In
total, 56 numerical and 14 categorical synthetic data sets have been generated.

For data sets where cluster points are normally distributed in their relevant subspace, we
ensured that the variance of cluster members on individual relevant attributes is between 1
and 10% of the variance of all data points when uniformly distributed on an attribute. Various
amounts of overlap were introduced among the signatures of projected clusters, i.e., the larger
the average cluster dimensionality, the higher the chance for the overlap between signatures.

Real Data. We have tested P3C on three real-world data sets: two numerical, and one
mixed data set.

The first data set is the colon cancer data set of Alon et al. [5] that measures the expression
level of 40 tumor and 22 normal colon tissue samples in 2,000 human genes. The task is to
discover projected clusters using samples as data objects and genes as attributes. This task is
challenging due to the data sparsity (i.e., 62 data points in 2,000 attributes), but of practical
importance. A relevant attribute of a projected cluster represents a gene that has similar
values in the samples that belong to the projected cluster. Provided that a projected cluster
contains mainly tumor or normal samples, the relevant attributes are potential indicators for
the presence, respectively absence, of colon cancer.

Projected clusters may exist in data sets with moderate dimensionality when some of
the attribute are irrelevant. The second data set is the Boston housing data (UCI Machine
Learning Repository2), which consists of 12 numerical attributes of 506 suburbs of Boston.
Since this data set is not labeled, we apply clustering in an exploratory fashion, and report
interesting findings.

2 http://www.ics.uci.edu/ mlearn/MLRepository.html.
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To experiment on categorical data, we have chosen the Hepatitis data set (UCI Machine
Learning Repository) with 155 data points classified into two classes (“die” — 32 points, and
“live” — 123 points). It contains 19 attributes, out of which 5 are numerical. The numerical
attributes are discretized based on medical criteria, as suggested in the documentation that
comes with this data.

Experimental setup. We evaluate the performance of P3C against the following compet-
ing algorithms for projected clustering: PROCLUS [1], FASTDOC [18], MINECLUS [25],
HARP [23], SSPC [24], and ORCLUS [2].3 We intended to compare with EPCH [16] too,
but after consulting with its authors, and using the original implementation, we could not
find a parameter setting that produces results with reasonable accuracy on our synthetic data
sets.

We also evaluate the performance of P3C against the subspace clustering algorithm
MAFIA [15], which was shown to outperform CLIQUE [3]. We have considered both SUB-
CLU [12] and FIRES [13] in our preliminary experiments. However, the original implemen-
tations of these algorithms proved to have unacceptable scalability with respect to the number
of objects and attributes, in the case of SUBCLU, and a storage complexity problem, in the
case of FIRES.

On categorical data, we evaluate P3C against SUBCAD [9], and CLICKS [26].4 CAC-
TUS [10] was not included in our experiments, since CACTUS mines only a limited class of
subspace clusters, and CLICKS was shown to outperform CACTUS [26].

P3C requires only one parameter setting, namely the Poisson threshold. P3C does not
require the user to set the target number of clusters; instead, it discovers a certain number of
clusters by itself.

PROCLUS, HARP, SSPC, ORCLUS, and SUBCAD require the user to specify the target
number of clusters. On synthetic data, we have run these algorithms with the target number
of clusters equal to the true number of projected clusters. PROCLUS and ORCLUS require
the average cluster dimensionality as a parameter, which was set to the true average cluster
dimensionality. HARP requires the maximum percentage of outliers as a parameter, which
was set to the true percentage of outliers. For algorithms that require other various param-
eters, such as FASTDOC, MINECLUS, SSPC, and MAFIA, several reasonable values for
their parameters were tried, and we report results for the parameter settings that consistently
produced the best accuracy. SSPC was run without any semi-supervision. Except HARP,
MAFIA, and CLICKS all competing algorithms are non-deterministic; thus each of them is
run 5 times, and the results are averaged. We have observed that the performance of CLICKS
is very sensitive to the values of its parameters. Thus, we have run CLICKS 50 times with
different parameter settings, and report the averaged results.

On the labeled real data, we have run the competing algorithms with the target number of
clusters equal to the number of classes. Multiple values were tried for the other parameters
required by the competing algorithms, and the results with the best accuracy are reported.

On the housing data, since it has no labels, the evaluation of the competing algorithms is
cumbersome. The reason is that the performance of the competing algorithms is dependent
on a large number of required parameters, including critical ones such as the number of
clusters and the average cluster dimensionality. Under these circumstances, we apply only
P3C on the second real data set.

3 The code of PROCLUS, FASTDOC, HARP, SSPC, and ORCLUS was kindly provided by Kevin Yip and
the project Biosphere. The code of MINECLUS was kindly provided by its authors.
4 The code of SUBCAD and CLICKS was kindly provided by their authors.
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Fig. 3 P3C’s sensitivity to the Poisson threshold on a numerical b categorical data sets
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Fig. 4 Numerical data: category Uniform_Equal_Parallel

Performance measures. We refer to true clusters as input clusters, and to found clusters
as output clusters. On synthetic data, cluster labels and relevant attributes for each cluster are
known. On the labeled real data, we regard class labels as cluster labels. We use an F1_value
to measure the clustering accuracy. For each output cluster i , we determine the input cluster
j i with which it shares the largest number of data points. The precision of output cluster i is
defined as the number of data points common to i and j i divided by the total number of data
points in i . The recall of output cluster i is defined as the number of data points common
to i and j i divided by the total number of data points in j i . The F1_value of output cluster
i is the harmonic mean of its precision and recall. The F1_value of a clustering solution is
obtained by averaging the F1_values of all its output clusters. Similarly, we use an F1_value
to measure the accuracy of found relevant attributes based on the matching between output
and input clusters.

Sensitivity analysis. We have studied the sensitivity of P3C to the Poisson threshold.
Figure 3a and 3b illustrate the accuracy of P3C_hard measured using the two F1_values
introduced above as the Poisson threshold is progressively decreased from 1.0E − 10 to
1.0E − 100 for one of our numerical, respectively categorical, synthetic data sets. Same
results are obtained for P3C_soft. We observe that P3C is remarkably robust with respect
to the Poisson threshold. Similar results have been obtained on all our synthetic data sets,
numerical and categorical, but are omitted due to space limitations. Consequently, the Poisson
threshold can be set at any value in this range.

Accuracy results. On synthetic data, in all the performed experiments, the number of
clusters discovered by P3C equals the true number of projected clusters in the data.

Figures 4, 5, 6, 7, 8, 9, 10, and 11 show the accuracies of the compared algorithms as a
function of increasing average cluster dimensionality for the eight categories of numerical
data sets. Figures 12 and 13 illustrate the same thing for the two categories of categorical
data sets. We note that P3C_ hard and P3C_ soft have similar performance, with P3C_ soft
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Fig. 5 Numerical data: category Uniform_Equal_NonParallel
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Fig. 6 Numerical data: category Normal_Equal_Parallel
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Fig. 7 Numerical data: category Normal_Equal_NonParallel

being slightly more accurate in some cases. This shows the benefit of assigning points to
more than one cluster if the points satisfy the description of these clusters. We observe that
P3C significantly and consistently outperforms the competing algorithms, both in terms of
clustering accuracy and in terms of accuracy of the found relevant attributes.

The difference in performance between P3C and previous methods is particularly large for
data sets that contain very low-dimensional projected clusters embedded in high dimensional
spaces. Even in these difficult cases P3C shows very high accuracies, in contrast to the mod-
est accuracies obtained by the competing algorithms. As the average cluster dimensionality
increases, the accuracy of the competing algorithms increases as well.

On numerical data, our experiments indicate that P3C effectively discovers projected clus-
ters with varying orientation in their relevant subspaces. The accuracy of P3C on data sets
where projected clusters have axis-parallel orientation is as high as the accuracy of P3C on
data sets where projected clusters have arbitrary orientation.

On numerical data, the accuracy of P3C on data sets where projected clusters are uni-
formly distributed in their relevant subspaces is slightly higher than the accuracy of P3C on
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Fig. 8 Numerical data: category Uniform_Different_Parallel
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Fig. 9 Numerical data: category Uniform_Different_NonParallel
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Fig. 10 Numerical data: category Normal_Different_Parallel

data sets where projected clusters are normally distributed in their relevant subspaces. The
reason is that projections of clusters onto their relevant attributes can be approximated more
faithfully by the computed intervals for clusters in the former category than for clusters in
the latter category.

The number of relevant attributes for projected clusters does not have an impact on the
performance of P3C. This is to be expected, since P3C does not use in any way the average
cluster dimensionality.

We have used P3C_soft on the real data sets. On the colon cancer data, P3C discovers two
projected clusters. P3C obtains the highest clustering accuracy (67%), followed by HARP
(55%) and SSPC (53%), whereas the accuracies of the other projected clustering algorithms
are significantly lower on this data set: FASTDOC and PROCLUS obtain 43% accuracy, and
ORCLUS obtains 35%. The available implementation of MINECLUS cannot deal with such
a large number of attributes. MAFIA has unacceptable long running time. The dimension-
ality of these two projected clusters in 11, which is much smaller than the dimensionality
of the data set (i.e., 2,000). This indicates that only a relatively small fraction of genes out
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Fig. 11 Numerical data: category Normal_Different_NonParallel
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Fig. 12 Categorical data: category Equal
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Fig. 13 Categorical data: category Different

of the total number of genes may be relevant for distinguishing between cancer and normal
tissues, as also noted in previous work [5]. The biological significance of the genes selected
as relevant is yet to be determined.

On the housing data, P3C discovers two projected clusters, which exist in subspaces of
dimensionality 4. The first projected cluster contains suburbs that are similar in terms of
residential land, crime rate, pollution and property tax. The second projected cluster contains
suburbs that are similar in terms of business land, size, distance to employment centers, and
property tax. This data set illustrates that projected clusters can exist in data sets with a
moderate number of attributes when some of these attributes are irrelevant. To verify that
the members of the two projected clusters are not close in full dimensional space, we have
run KMeans (k = 2) several times. In all runs, the members of the projected clusters discov-
ered by P3C are distributed between the clusters found by KMeans, which indicate that full
dimensional clustering cannot reproduce the same clusters.

On the Hepatitis data, P3C discovers 1 projected cluster of dimensionality 2. The pro-
jected cluster corresponds to the class “live”, which is much larger than the second class. The
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Fig. 14 Numerical data: robustness to noise
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Fig. 15 Categorical data: robustness to noise

two relevant attributes are “ascites” and “varices”, suggesting a possible correlation between
these conditions and the outcome of the disease. P3C obtains the highest clustering accuracy
(88%), followed by SUBCAD (51%), and by CLICKS (2%). Since this data set has moderate
dimensionality, we have applied on it a state-of-the-art full-dimensional clustering algorithm
for categorical data, LIMBO [6]. LIMBO achieves an accuracy of 61%, suggesting that the
two classes are not easily discernible in full-dimensional space.

Robustness to outliers. Data sets with n = 10, 000, d = 100, five clusters, average clus-
ter dimensionality 4, and different percentages of outliers were generated. Figure 14 shows
the accuracies of the compared algorithms as a function of increasing percentages of outliers
for numerical data. Figure 15 illustrates the same thing on categorical data. P3C, as well as
most of the competing algorithms, are robust in the presence of outliers. On numerical data,
the clustering accuracy of P3C decreases only slightly as more outliers are introduced. Even
when the percentage of outliers in the data is as high as 25%, P3C still obtains a clustering
accuracy of 86%. On categorical data, the accuracy of P3C is preserved as the percentage of
outliers increases.

Scalability experiments. In all scalability figures, the time is represented on a log scale.
Figure 16a shows scalability results for numerical data sets with d = 10, 2 clusters, 5%

outliers, average cluster dimensionality 2, and increasing database sizes. Figure 16b shows
scalability results for categorical data sets with the same characteristics. The scalability of
P3C with respect to database size is comparable to the scalability of the fastest competing
algorithms.

Figure 17a shows scalability results for numerical data sets with n = 10, 000, 2 clus-
ters, 5% outliers, average cluster dimensionality 2, and increasing database dimensionality,
whereas Fig. 17b illustrates the same thing for categorical data sets. P3C is relatively unaf-
fected by increasing data dimensionality, because attributes with uniform distributions are
not involved in the computation of cluster cores.
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Fig. 16 Scalability with increasing database size
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Fig. 17 Scalability with increasing database dimensionality
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Fig. 18 Scalability with increasing average cluster dimensionality

Figure 18a shows scalability results for numerical data sets with n = 10, 000, d = 100,
5 clusters, 5% outliers, and increasing average cluster dimensionality. Figure 18b illustrates
similar results for categorical data sets. The running time of P3C increases with increasing
average cluster dimensionality, due to the increased complexity of p-signatures genera-
tion. However, as the average cluster dimensionality increases, clusters become increasingly
detectable in full dimensional space. P3C has comparable running times to the other projected
clustering algorithms at low average cluster dimensionality, which is the critical cases that
“full-dimensional” clustering algorithms cannot deal with.

Figure 19 shows scalability results for categorical data sets with n = 10, 000, d = 100, 2
clusters, 5% outliers, and increasing domain sizes. All algorithms are relatively unaffected
by increasing domain sizes.
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Fig. 19 Scalability with domain
size per attribute
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5 Related work

5.1 Projected clustering techniques

PROCLUS [1] is essentially a k-medoid algorithm adapted to projected clustering. In con-
trast to the standard k-medoid algorithm, initial clusters around the medoids are computed
as basis for the simultaneous selection of relevant attributes. The performance of PROCLUS
crucially depends on 2 required input parameters (k — the desired number of projected clus-
ters, and l—the average cluster dimensionality), whose appropriate values are difficult to
guess. Another weakness is the strong dependency on the initial clustering which is hard to
determine since it is performed in full-dimensional space where the “true” distances will be
distorted by noisy attributes.

ORCLUS [2] is a generalization of PROCLUS that can discover clusters in arbitrary sets of
orthogonal vectors. The quality of a projected cluster is defined as the sum of the variances of
the cluster members along the projected attributes. Therefore, in order to identify the projec-
tion in which a set of points cluster “best” according to the quality measure, ORCLUS selects
the eigenvectors corresponding to the smallest eigenvalues of the covariance matrix of the
given set of points. The parameter l is used to decide how many such eigenvectors to select.
While ORCLUS can find significantly more general clusters, it inherits the weaknesses of
PROCLUS discussed above.

DOC [18] defines a projected cluster as a pair (C, D), where C is a subset of points, and D
is a subset of attributes, such that C contains at least a fraction α of the total number of points,
and D consists of all the attributes on which the projection of C is contained within a segment
of length w. DOC uses the function µ(|C |, |D|) = |C | ∗ (1/β)|D| to measure the quality of a
projected cluster, where β is a user-specified parameter. DOC computes one projected cluster
at a time using a randomized algorithm with certain quality guarantees. In order to reduce
the time complexity of DOC, its authors introduce a variant, called FASTDOC, which uses
three heuristics to reduce the search time. Similar to PROCLUS, the performance of DOC
is sensitive to the choice of the input parameters, whose values are difficult to determine for
real-life data sets. In addition, the assumption that a projected cluster is a hyper-cube of same
side length in all attributes may not be appropriate in real applications.

MINECLUS [25] improves upon DOC by proposing a deterministic method to find the
optimal projected cluster around a given pivot point. Each data point is modeled as an item-
set that includes the attributes in which the point is within w distance from the pivot point.
The problem of finding the projected cluster around p with maximum µ value becomes the
problem of mining the frequent itemset with the maximum µ value. The paper proposes a
technique that modifies a known frequent pattern tree growth method used for mining fre-
quent itemsets. Yet the accuracy of MINECLUS still depends on the three parameters α,
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β, and w. To compensate for the effect of these parameters, several heuristic refinement
strategies are proposed.

HARP [23] is an agglomerative, hierarchical clustering algorithm that starts by placing
each data object in a cluster. Two clusters are allowed to merge if the resulting cluster has
dmin or more relevant attributes, and an attribute is selected as relevant for the merged cluster
if a given relevance score is greater than Rmin . dmin and Rmin are two internal thresholds that
start at some harsh values so that only objects belonging to the same real cluster are likely
to be merged. Subsequently, as the clusters increase in size, and the relevant attributes are
more reliably determined, the two thresholds are progressively decreased, until they reach
some base values or a certain number of clusters has been obtained. HARP avoids the com-
putation of initial clusters that are not necessarily reasonable approximations of real clusters.
However, the relevance score of HARP makes it less effective in the case of low dimensional
projected clusters.

SSPC [24] is similar in structure to PROCLUS, and its performance can be improved by
the use of domain knowledge in the form of labeled objects and/or labeled attributes. SSPC
uses an objective function based on the relevance score of HARP. The performance of SSPC
depends on a user-defined parameter that controls the relevance scores of attributes. SSPC
can find projected clusters with moderately low dimensionality whereas most other methods
fail due to an initialization based on the full-dimensional space.

EPCH [16] computes low-dimensional histograms (1D or 2D), and “dense” regions are
identified in each histogram, based on iteratively lowering a threshold that depends on a
user-specified parameter. For each data object, a “signature” is derived, which consists of
the identifiers of the dense regions the data object belongs to. The similarity between two
objects is measured by the matching coefficient of their signatures in which zero entries in
both signatures are ignored. Objects are grouped in decreasing order of similarity until at
most a user-specified number of clusters is obtained. The performance of EPCH is sensitive
to the values of its parameters.

We have introduced the variant of P3C for numerical data that computes disjoint clusters
in [14]. In the current contribution, we extend P3C for categorical data, namely we propose
novel techniques for approximating 1D cluster projections, and for refining cluster cores
into projected clusters on categorical data. In addition, we allow P3C to compute overlap-
ping projected clusters, which makes it comparable to subspace clustering algorithms.

5.2 Subspace clustering techniques

CLIQUE [3] overlays an axis-aligned grid over the data space by dividing each attribute
into equi-length units of width ξ . A unit is dense if it contains more than a fraction τ of the
points. A subspace cluster is defined as a maximal set of adjacent dense units in a subset of
attributes. The density of a unit satisfies the downward closure property, and is used to prune
effectively the search space in the process of detecting subspace clusters in all subspaces of
a data set. Finally, a description is generated for each cluster by computing its cover with
maximal, possibly overlapping, axis-parallel hyper-rectangles. The performance of CLIQUE
is very sensitive to the resolution of the grid used. CLIQUE may miss some clusters when
heuristic pruning strategy are used, or if the clusters are inadequately oriented or shaped with
respect to the positioning of the grid.

MAFIA [15] is a grid-based subspace clustering algorithm that addresses some of the
drawbacks of CLIQUE. MAFIA partitions each attribute into adaptive units that capture the
data distribution on that attribute. As a consequence, the number of 1D dense units gen-
erated by MAFIA is much smaller than those generated by CLIQUE, which results in a
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smaller search space than in CLIQUE. In addition, a cluster is represented by a cross-product
of dense units, and, thus, MAFIA avoids computing clusters and their descriptions as in
CLIQUE. Also, MAFIA only reports “maximal” clusters. Although MAFIA can explore
more subspaces than CLIQUE in a more efficient way, it still suffers from problems similar
to CLIQUE, namely sensitivity to the input parameters and the usage of a global density
threshold.

SUBCLU [11] extends the formal definition of a density-connected cluster underlying
the DBSCAN algorithm for the problem of subspace clustering by showing that the density-
connectivity property satisfies the downward closure property. SUBCLU is able to detect sub-
space clusters with more general orientation and shape than grid-based approaches. However,
it is also based on global density thresholds.

FIRES [13] starts with 1D clusters that can be obtained using any clustering algorithm
of choice. These 1D clusters are used to construct a shared k-nearest neighbor graph: ver-
tices correspond to 1D clusters, and an edge connects two vertices if each vertex is among
the k-nearest neighbors of the other vertex. A modified DBSCAN algorithm is applied to
this graph, and approximations of subspace clusters are generated, which are subsequently
refined in a final post-processing step. Unlike other subspace clustering algorithms, FIRES
does not use downward-closed properties to efficiently prune the search space. However, the
performance of FIRES is very sensitive to its multiple parameters.

5.3 Categorical projected/subspace clustering techniques

SUBCAD [9] is a projected clustering algorithm for categorical data that partitions a data set
into a user-specified k number of projected clusters such that a certain objective function is
minimized. The performance of SUBCAD is very sensitive to its initialization performed in
full-dimensional space. In addition, SUBCAD has no mechanism for detecting outliers.

CLICKS [26] computes subspace clusters as dense maximal cliques in a graph-based rep-
resentation of a data set, in which the existence of edges between attribute values on different
attributes is controlled by the user-defined density threshold α. Two additional post-process-
ing steps are performed: (1) all dense maximal sub-cliques of a non-dense maximal clique
are reported, and (2) maximal cliques with support larger than a user-defined σ are merged.
The accuracy of CLICKS is highly dependent on the values of its parameters.

CACTUS [10] uses the same graph-based representation of a data set as CLICKS. First,
CACTUS computes cluster projections on individual attributes by using the notion of a “dis-
tinguishing set” of size k, which is a set of k attribute values that uniquely occur within only
one cluster. Distinguishing sets of size k are equivalent to cliques of size k in the associated
graph. The assumption that clusters are uniquely identified by a core of attribute values that
do not occur in other clusters is not necessarily true in all data sets. Second, cluster projections
on individual attributes are used to generate cluster candidates of higher dimensionality. Due
to the level-wise cluster candidates generation technique, CACTUS discovers only a limited
class of subspace clusters. The accuracy of CACTUS highly depends on its parameters.

6 Conclusions

Projected clustering is motivated by data sets with a large number of attributes or with irrele-
vant attributes. Existing projected clustering algorithms crucially depend on user parameters
whose appropriate values are often difficult to anticipate, and are unable to discover low-
dimensional projected clusters. In this paper, we address these drawbacks through the novel,
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robust projected clustering algorithm P3C. P3C is based on the computation of so-called clus-
ter cores. Cluster cores are defined as regions of the data space containing an unexpectedly
high number of points, forming cores of actual projected clusters. Cluster cores are generated
in an Apriori-like fashion, and subsequently refined into projected clusters. Depending on
the application needs, P3C can compute either disjoint or overlapping clusters. In contrast to
previous work, P3C can be applied on both numerical and categorical data sets. Our experi-
mental evaluation on numerous synthetic data sets and three real data sets demonstrates that
P3C consistently and significantly outperforms state-of-the-art methods in terms of cluster-
ing accuracy and accuracy of the found relevant attributes; it can discover effectively very
low-dimensional projected clusters while being robust to the only required parameter; it is
robust to noise, and it scales well with respect to large data sets and high number of attributes.

Acknowledgments We thank anonymous reviewers for their very useful comments and suggestions. We
would like to thank Kevin Yip from Yale University for providing us with the implementation of some of the
comparing algorithms for projected clustering. This research was supported by the Alberta Ingenuity Fund
and the iCORE Circle of Research Excellence.

References

1. Aggarwal C, Procopiuc C, Wolf J, Yu P, and Park J (1999) Fast algorithms for projected clustering. In:
Delis A, Faloutsos C, Ghandeharizadeh S (eds) Proceedings of the ACM SIGMOD international confer-
ence on management of data, Philadelphia, pp 61–72

2. Aggarwal C, Yu P (2000) Finding generalized projected clusters in high dimensional spaces. In: Chen W,
Naughton J, Bernstein P (eds) Proceedings of the ACM SIGMOD international conference on management
of data, Dallas, pp 70–81

3. Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimen-
sional data for data mining applications. In: Haas L, Tiwary A (eds) Proceedings of the ACM SIGMOD
international conference on management of data, Seattle, pp 94–105

4. Agrawal R, Srikan R (1994) Fast algorithms for mining association rules. In: Bocca J, Jarke M, Zaniolo C
(eds) Proceedings of the international conference on very large data bases VLDB, Santiago de Chile,
Chile, pp 487–499

5. Alon U, Barkai N, Notterman D, Gish K, Ybarra S, Mack D, Levine A (1999) Broad patterns of gene
expression revealed by clustering of tumor and normal colon tissues probed by oligonucleotide arrays.
Proc Natl Acad Sci USA 96(12):6745–6750

6. Andritsos P, Tsaparas P, Miller J, Sevcik K (2004) LIMBO: scalable clustering of categorical data. In
Proceedings of international conference on extending database technology EDBT, Heraklion, Greece,
pp 123–146

7. Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When is nearest neighbor meaningful? Lecture
Notes in Computer Science, vol. 1540. Springer, Berlin, pp 217–235

8. Dempster A, Laird N, Rubin D (1977) Maximum likelihood for incomplete data via the EM algorithm.
J Roy Stat Soc 39:1–38

9. Gan G, Wu J (2004) Subspace clustering for high dimensional categorical data. ACM SIGKDD Explor
Newslett 6(2):87–94

10. Ganti V, Gehrke J, Ramakrishnan R (1999) CACTUS — clustering categorical data using summaries. In:
ACM SIGKDD international conference on knowledge discovery and data mining, San Diego, pp 73–83

11. Hinneburg A, Keim D (2003) A general approach to clustering in large databases with noise. Knowl Inf
Syst 5(4):387–415
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